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Abstract — A generalized information measure, called degree of pre-meaning, is discussed here, with 

primary objective to understand the most about state sequences. Computational experiments over 

selected long archetypal strings have been made and analytical expressions are presented. Learning, 

optimal alphabets and fusion of states have been also discussed. Laws of learning have been unveiled. 
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I. INTRODUCTION 

A generalized information measure, called degree of pre-meaning, is discussed here, with primary 

objective to understand the most about state sequences. Our approach adheres to the framework set 

by previous classic works, such as [1, 2, 3]. We name state sequence any linear chain (string) of 

states (for example: English or formal texts, time-series, DNA-sequences, etc.), 1-state the element 

(atom) of which the state-sequence is made of, s-state (or s-word) a combination of s consecutive 

1-states. These 1-states may represent numbers, words, or other concepts. Also, importantly, any s-

state can be considered a 1-state in a redesigned analysis. We use the term state space or alphabet 

for the set of 1-states. When we discuss not an actualized state-sequence but all potential ones 

given a state space, we use the term syntactic space. Also, inversely, an actualized syntactic space 

is a given sequence. 

II. DEFINITION OF THE DEGREE OF PRE-MEANING 

We recognize that the meaning of a state increases with the number of states, N, of the space that 

we know that this state belongs to. Let m
 

1(N) := log
 

2(N) be the per-state minimal meaning, or m-

meaning, of a state-space of N 1-states. Also let M
 

1(N) := N m
 

1(N) be the total m-meaning. In 

general, for s-states, m
 

s(N) := s log
 

2(N), and M
 

s(N) := N
s

  s log
 

2(N). Since M
 

s(N) is the total 

number of bits needed to articulate and store a priori all s-words, it can also be interpreted as a 

volume of bits. The total minimal meaning of all at-most K-state long combinations of the 1-states, 

M
 

 

*
(N,K), is the sum of all M

 

s(N) up to s=K. The quantity K can be, for example, an appropriately 

defined limit of a detection- or cognitive- system. Following analogous reasoning and using 

entropies as in [1, 2, 3], a definition of the total information can be I
 

1(N, L) := NH(1, L), where 

H(s, L) is the entropy from the s-words of an actualized state-sequence of length L. This can be 

interpreted as the bit-volume needed to describe and store an actualized state-space. For the total 

information related to the s-words, we have I
 

s(N, L) := N
s

  H(s, L). Adding all I
 

s(N, L) we obtain 

the total information of all at-most K-state long combinations of the 1-states, I
 

 

*
(N,K,L). We define 

the degree of pre-meaning to be the ratio of two measures of information (a ratio of bit volumes): 

 µ(N,K,L) :=   M
 

 

*
(N,K) / I

 

 

*
(N,K,L)  (1) 

By forming this ratio we give to µ a pure sense free from units. μ can be also seen as the inverse of 
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the percentage of the M
 

*
 bit-volume actualized, or, more loosely speaking, as the ratio of 

“definition” to “surprise”. Obviously µ(N,K) ≥ 1.  

 

Even if storage capacities and bit volumes are not enough to attack what we have aggressively 

named pre-meaning, understanding and memory are closely related, and, as E. Alvarez-Lacalle et 

al. say in [5]: “Understanding texts requires memory: the reader has to keep in mind enough 

words to create meaning. This calls for a relation between the memory of the reader and the 

structure of the text”. We believe that μ captures a lot of the interesting aspects of understanding, 

and this is what we will try to show in what follows. Also, another interesting aspect of our 

approach is that one can define extrema of the degree of pre-meaning, even some kind of an 

average degree of pre-meaning related to a specific syntactic space, investigating therefore the 

capacity of a particular space as a carrier of meaning. This can even be connected to cultural ways 

of representing “reality”. 

III. COMPUTATIONAL EXPERIMENTS 

In the next pages, while discussing various phenomena we will corroborate our claims using 

computational experiments over several archetypal strings, which are defined as follows: 

 

SYMDYN: Aperiodic symbolic-dynamics-oriented sequence so constructed to have very-long-

range correlations. The sequence is build by what we may call the “rabbit law”. We start by the 

binary 0. Then we iterate several times the productions (rules): 0→1, 1→10.  The resulted binary 

text of bits is deflated by block-grouping three bits to form a sequence of integers. The number of 

consecutive bits in the group is so selected (experimentally) to produce only 4 different integer 

codes. The autocorrelation function (a.c.f.) of such a state sequence shows very strong harmonic-

like behavior with very slow amplitude decrease. Here L = 600 000 000. 

 

PERIODIC: Perfect saw-tooth-like periodic sequence, with 4 different numerical codes recorded. 

The a.c.f of such a state sequence is a slowly decreasing periodic function. Here L = 220 000 000. 

 

DNA: Homo sapiens Chromosome 1 DNA sequence. The sequence contains fuzzy regions named 

N (in addition to the traditional A, C, T, G letters) and few artifacts like, carriage return, and space. 

The raw “fasta”-formatted sequence contains 7 different codes (characters). Here L = 222 827 847 

and N = 4 because we have cut all artifacts and concatenated the rest in one large string.  
 

TEXTS: The texts have been copied from Project Gutenberg web site (http://www.gutenberg.org) 

and have been cleared from any translators’ comments, punctuation marks, redundant spaces, or 

any other metadata like line numbers. Only 63 characters are recognized, (normal and capital 

English letters, numbers and space). 

 Whitman: Whitman, Walt, Poems by Walt Whitman, EText-No. 8388. Release Date 2005-06-

01. L = 275801, N = 63. WRD: L = 51314, N = 8328. 

 Tolstoy: Tolstoy, Leo, War and Peace, EText-No. 2600. Release Date 2001-04-01. L =   

3026626, N =  63. WRD: L = 572593, N = 19106. 

 Byron: George Gordon Byron, The Works of Lord Byron Vol. 4, EText-No. 20158. Release 

Date 2006-12-22. L = 478105, N = 63. WRD: L = 94442, N = 11390. 

 Kant: Kant, Immanuel, The Critique of Pure Reason, EText-No. 4280. Release Date 2003-07-

01. L = 1212043, N = 63. WRD: L = 209756, N = 7176. 

 

The word analysis (WRD) happens as follows: all words (i.e. strings of characters between spaces 

or other punctuation marks, without the punctuation marks) are treated as symbols and are put in 

the symbol table for a normal pre-meaning analysis. Obviously this way N is greatly increased and 

L decreased, but universally μ is also increased. As can be seen in figure 5, μ can clearly 

differentiate poetry from text in both variations of the analysis, i.e. character based or word based. 

More details can be discerned inside the families of curves. 

 



 

 

The probabilities of the s-words are calculated by the programs for s-words that may overlap. 

 

For any periodic sequence we have μ = K  NK/(NK-1)  -  1/(N-1). This is also observed by our 

programs to a remarkable accuracy (see figure 1). This theoretical result also serves as a numerical 

crosscheck. 

 

Computational analysis of the SYMDYN sequence that is also gradually shuffled is displayed in 

figure 2. Shuffling is the process of randomly selecting pairs of positions in the sequence (until the 

required percentage if satisfied) and then exchanging the characters in these positions. This 

process does not alter μ(1). Obviously the percentage of the altered positions is smaller than the 

shuffling percentage due to the possibility of exchanging identical characters, and the (smaller) 

probability by chains of replacements to return to the initial position the same character that was 

initially there. In figure 3 the same degradation of μ is investigated for DNA. Probably there are 

biological reasons for the distance between curve K=16 and the rest. This distance signals a 

resistance to destruction of the 16-words of the DNA. Figure 4 shows a comparison between the 

full chromosome 1 sequence (circles) with three other, smaller sequences (10 million characters 

approximately each), taken at different starting points within the long one. The clear differentiation 

of the smaller sub-sequences for small words (small K) clearly shows a region of what can be 

called different biological “meaning”. 

 

μ can also be used in fundamental studies of the mechanism of construction of meaning, and in 

cryptanalysis studies, where the µ of a text is measured and compared to supposed similar ones to 

unveil the possibility of a hidden message. A variety of equally important themes is explored next.  

IV. FUZINESS 

An analysis based on μ has advantages, compared for example to simple block-entropy analyses, 

because it can directly capture state fusion and de-fusion phenomena and this ability is discussed 

later and put in use to determine optimal alphabets. Since the m-meaning of a state is synonymous 

to the unambiguous determination of it among the set of states that it belongs to, it seems that, the 

fuzzier the determination of a state becomes, the less degree of pre-meaning is conveyed, because, 

due to fusion of states, M
 

*
 is lowered. Things, nevertheless, are not so simple, because, in many 

cases, fuzziness, by emphasizing the important aspects of a normality or a symmetry, can 

effectively increase μ because I
 

*
 is lowered. This phenomenon is captured by μ. 

V. DISORDER 

µ as is defined in (1) has an interesting alternative interpretation. We can write (1) in the form 

 µ(N,K) = 1 /  D(N,K)  (2) 

the inverse of an appropriately averaged disorder. This average is weighted by the percentage of 

the m-meaning related only to s-states, w
 

s(N,K) :=  M
 

s(N) / M
 

 

*
(N,K), and:  

  D(N,K)  :=  

K

∑
s=1

 w
 

s(N,K) D
 

s(N),  

with D
 

s(N) the s-disorder, our generalization of the simple disorder defined in [4] that is related to 

our s-states 

 D
 

s(N) := - 

 N 

∑

i
 

1
=1

 

 N 

∑

i
 

2
=1

 ... 

 N 

∑

i
 

s
=1

 p(i
 

1, i
 

2, ..., i
 

s) log

 

 

N
s

 

(p(i
 

1, i
 

2, ..., i
 

s)) = 
H(s)

slog
 

2N
 . 

We omit L, but since we are using s-word occurrence counting to approximate probabilities, L is 

implied on all D and H quantities. Maybe a better approach could have been to use the s-th order 



 

 

empirical entropy of Manzini [6], often used in discussions of compression algorithms, which 

applies to finite texts, accepting that the classical s- block entropy that we are now using can only, 

strictly speaking, be defined for infinite sources. The empirical entropy coincides with the 

statistical estimation of the entropy taking the text as a finite sample of the infinite source, and is 

not making any assumptions on the distribution of the text internals. This approach has advantages 

and we plan to use it in the future, but for now that we are trying to understand the potential of the 

degree of pre-meaning, it is better to link it with well understood notions. The empirical entropy is 

calculated using the occurrences of substrings consisting of concatenated selected ends of the s-

words and the meaning of the process is not easy to grasp.  

VI. INFORMATION PROCESSING 

To understand the mechanics of µ we study few information processing activities. Two important 

macroscopic “information processing” parameters of our approach are N and K, (a third one, 

equally important, is L), and at this point, these questions arise naturally: Q1) Are there any 

relations that µ satisfies in relation to N and K? Q2) Is it possible to gradually determine µ? Q3) 

Which might be the relations that µ satisfies with respect to special probabilistic substructures? We 

already know that µ = 1 for the random case. Can we have in particular µ = constant with respect 

to N or K, more generally? After some algebraic manipulation the following relation is derived: 

 D(N,K)  = ( )1-w
 

K(N,K)   D(N,K-1)  + w
 

K(N,K) D
 

K(N), K = 2,3, ..., &  D(N,1)  = D
 

1(N). (3) 

This answers Q2. From (3) we answer Q3: put  D(N,K)  =  D(N,K-1)  and observer that, if 

D
 

K(N) µ(N,K-1) = 1 then, μ remains unchanged after introducing one-more-state-long words of 

the 1-states. Eq. (3) also gives 

 
µ(N,K) - µ(N,K-1) 

µ(N,K)
  =  w

 

K(N,K) ( )1 - D
 

K(N) µ(N,K-1) . (4) 

This means, more generally, that, whether we are going to see a relative increase or a decrease to μ 

after the introduction of one-more-state-long combinations of the 1-states, is controlled by 

(D
 

K(N) µ(N,K-1)) being smaller or larger than 1. Equation (4) is also half answer to Q1. The other 

half of Q1 is answered soon. 

VII. LEARNING 

We investigate when an enlargement of the state-space does not contribute to an increase of μ. To 

start, we observe that, even if there is a non-zero probability of appearance of one new state, the 

probabilities of manifestation of this state in conjunction with previous states (to form s-words), is, 

at the first stages of the process of construction of meaning, zero (this is the situation where a 

cognitive system may or may not produce any higher level association, at time t, while being fed 

with (random or not) s-states for all s). To explore this situation we put p(i
 

1=N+1) > 0 & p(i
 

1,i
 

2, ..., 

i
 

r =N+1, ..., i
 

s) 
~~ 0, for all r, s, with  r, s = 1, 2, ..., K. We assume that N >~ K (true, for example, for 

most words of the majority of occidental languages, interpreting K as a maximum word-length). 

Then we can use the approximation w
 

s(N+1,K) ~~ w
 

s(N,K), for N >~ K. Also, for N>>1, we have 

log

 

 

(N+1)
s

 

(p)  ~~  log

 

 

N
s

 

(p). These approximations, lead to D
 

1(N+1) ≠ D
 
1
(N) and D

 

s(N+1) ~~ D
 

s(N) 

for s = 2, 3, ..., K. So, here  D(N+1,K)  ~~  D(N,K)  + w
 

1(N,K) ( )D
 

1(N+1) - D
 

1(N) , thus, we 

find: 

 
µ(N+1,K) - µ(N,K) 

µ(N+1,K)
  = - w

 

1(N,K) µ(N,K) ( )D
 

1(N+1) - D
 

1(N)  (5) 

Equation (5) is an important result of this work because we see that, only if the 1-disorder clearly 

drops with N: 



 

 

  ∆
 

N D
 

1(N) := ( )D 
 

1(N+1) - D 
 

1(N)  < 0 (6) 

and if, at the same time, the established degree of pre-meaning is of significant value: 

 w
 

1(N,K) µ(N,K) > 1 (7) 

we can see a significant relative increase of μ with N at the first stages of creation of meaning.   

We call equations (6), (7) “laws of learning”. These laws do not say what can be learned but how 

to learn efficiently. 

 

One can generalize our “laws of learning” to more complex set-ups, like for example, in a theory 

of scientific understanding. We will not pierce in such a theory here, but we will note the 

similarities of our laws of learning to the basic ingredients of an outline of a theory of scientific 

understanding presented in [7]. To quote from these authors: “The basic theory of scientific 

understanding exploits three main ideas: First, that to understand a phenomenon P, a given agent 

has to be able to fit P into its cognitive background corpus C. Second, that to fit P into C is to 

connect P with parts of C, such as the unification of C increases. Third, that the cognitive changes 

involved in unification can be treated as sequences of shifts of phenomena in C”. We keep for our 

purposes the key importance of the cognitive background corpus C, that we can obviously link to 

µ, and that the changes in C must increase the unification of C and must be treatable within the 

context of C, and we take the liberty to link that to a lowering of a disorder in C.  

VIII. EXCISION OF A SMALL STATE-SUBSPACE 

Let us investigate what happens when a small subset, S, of the state-space A is cut from the rest. 

To keep algebraic manipulation to reasonable margins, we fix K=2 (this choice is not 

compromising generality because the 1-states that combine to form the 2-state can be of arbitrary 

“internal” complexity). Let us assume that the set A has N elements, and that the set S, (subset of 

A) has n elements. Then, we put p(i,j) = 0 if i XOR j S. So, 

 D
(A)

2 (N) = 
log

 

2(N-n)

log
 

2(N)
 D

(A-S)

2 (N-n)  + 
log

 

2(n)

log
 

2(N)
 D

(S)

2 (n) 

 D
(A)

1 (N) = 
log

 

2(N-n)

log
 

2(N)
 D

(A-S)

1 (N-n) + 
log

 

2(n)

log
 

2(N)
 D

(S)

1 (n) 

Now, 

 D
(A)

 (N,2)  = w
 

1(N,2) D
(A)

1 (N)  + w
 

2(N,2) D
(A)

2 (N) 

 D
(S)

 (n,2)  = w
 

1(n,2) D
(S)

1 (n) + w
 

2(n,2) D
(S)

2 (n) 

 D
(A-S)

 (N-n,2)  = w
 

1(N-n,2) D
(A-S)

1 (N-n) + w
 

2(N-n,2) D
(A-S)

2 (N-n) 

From these, we get after some algebra 

 
log

 

2(N)

w
 

2(N,2)
 D

(A)

 (N,2)   =  
log

 

2(N-n)

w
 

2(N-n,2)
 D

(A-S)

 (N-n,2)  + 
log

 

2(n)

w
 

2(n,2)
 D

(S)

 (n,2)  + 

                                     -  
n

2N
 
log

 

2(N-n)

N-n
 D

(A-S)

1 (N-n) -  
N-n

2N
  

log
 

2(n)

n
 D

(S)

1 (n)  (8) 

To understand eq. (8) we will study a special case with 1 << n << N. Then eq. (8) becomes 

 
log

 

2(N)

w
 

2(N,2)
 D

(A)

 (N,2)  ~~ 
log

 

2(N-n)

w
 

2(N-n,2)
 D

(A-S)

 (N-n,2)  + 
log

 

2(n)

w
 

2(n,2)
 D

(S)

 (n,2)  - 
log

 

2(n)

2n
D

(S)

1 (n)  

or 

 D
(A)

 (N,2)  ~~ 
log

 

2(N-n)

log
 

2(N)
 

w
 

2(N,2)

w
 

2(N-n,2)
 D

(A-S)

 (N-n,2)  + 
log

 

2(n)

log
 

2(N)
 w

 

2(N,2) D
(S)

2 (n), 



 

 

or, since     
log

 

2(N-n)

log
 

2(N)
 

w
 

2(N,2)

w
 

2(N-n,2)
 = 1 + O

n

Nlog
 

2(N)
,    and      w

 

2(N,2) = 
2N

1+2N
 = 1 + O

1

2N
 , 

 D
(A)

 (N,2)  ~~ D
(A-S)

 (N-n,2)   +   
log

 

2(n)

log
 

2(N)
  D

(S)

2 (n). 

So 

 
µ

(A)

 (N,2) - µ
(A-S)

 (N-n,2)

µ
(A)

 (N,2)
  ~~ - µ

(A-S)

 (N-n,2)) 
log

 
2
(n)

log
 

2(N)
  D

(S)

2 (n)  (9) 

The r.h.s. of (9) is always negative. This is a remarkable result. It says that 

µ
(A)

 (N,2) < µ
(A-S)

 (N-n,2), or that in the first stages of construction of meaning, when K is small, 

once a space of a large alphabet is altered by an appropriate excision of a subspace of adequate 

extent, then the degree of pre-meaning rises! This reminds to us a familiar learning methodology 

where one simplifies a conceptual space by ignoring some concepts at start. 

IX. OPTIMAL ALPHABETS 

The probabilities of the s-states do not tell whether a state is a member of the alphabet or is an s-

state. So given a state-sequence of large length, L, without knowing the alphabet and N, and 

having measured the probabilities p
 

a
, a=1, 2, ..., Q, of all actualized s-states with s=1, 2, ..., K, 

with 1 « K « L, then we may (temporarily) assume that these Q states constitute the alphabet and:  

 µ(Q,1) =  
1

 D(Q,1) 
 =  

1

w
 

1(Q,1)D
 

1(Q)
  =  

1

D
 

1(Q)
 . (10).  

Obviously if we know the “true” N-member alphabet, then the same probabilities of the states, 

(with a renaming of the states) give, as we know from equation (1), µ(N,K), where the 

probabilities of those states that never appear a-posteriori are zero (but because of the alphabet 

they could have a-priori appeared), since in general 

 Q ≤  

K

∑
s=1

 N
s

 
  (11) 

Based on the fact that in (10) and (1) we have the same states and that (11) also holds, we show the 

theorem:  

Always µ(N,K) ≥ µ(Q,1), except for N=2 at K=2, where, the inequality may fail. (12) 

[Proof:   µ(N,K) ≥ µ(Q,1)   

K

∑
s=1

 w
 

s(N,K) D
 

s(N)  D
 

1(Q)    

-

K

∑
s=1

  
w 

 

s(N,K) log
 

2Q

s log
 

2N

 N 

∑

i
 

1
=1

 ... 

 N 

∑

i
 

s
=1

 p(i
 

1,..., i
 

s) log
 

2( )p(i
 

1, ..., i
 

s)   -

 

∑
a

 p(a) log
 
2
( )p(a)  = 

-

K

∑
s=1

   

 N 

∑

i
 

1
=1

 ... 

 N 

∑

i
 

s
=1

 p(i
 

1,..., i
 

s) log
 
2( )p(i

 

1, ..., i
 

s)  . 

In the last equation, we just renamed the states under summation. The states do not change. Now, 

w 
 

s(N,K) log
 

2Q

s log
 

2N
 = 

 s N
s

 log
 

2Q

 

K

∑
r=1

 r N
r 

  s log
 

2N

  

 N
K

 log
 
2

K

∑
r=1

 N
r 

 

 

K

∑
r=1

 r N
r 

  log
 
2
N

 =

 N
K

 log
 

2

N
K+1

  - N

N-1
 ( )N-1

2 

 

 ( )N
K+2

  K - N
K+1

  K - N
K+1

  + N  log
 

2N

 



 

 

which is always  1 except on the N=K=2 case where it jumps to 
2

5
 
ln(6)

ln(2)
  1.034 if Q=6. So 

inequality (12) is true under the stated conditions. 

 

Please note that the anomaly at N=K=2, does no essential harm to the usability of the theorem, 

because we will usually have Q>>1 and we will use the theorem to visit large N cases, smaller or 

much smaller than Q of course, while seeking for  the “best” alphabet.] 

 

Eq. (12) provides, first, a means for computational discovery of the unknown alphabet, and, 

second, reveals to us the power of the proper naming of things. There are two ways to perform the 

search for an optimum alphabet in a given text. Either start from a very fine stratification 

homogeneously fuse states, compute µ, compare and reiterate, or, start from a very coarse-grained 

sequence and iteratively homogeneously defuse states and compute µ. Always in a way to 

maximize µ. We present an algorithm based on a systematic fusion of states, starting from a very 

fine stratification.  

 

 ▼Algorithm: 

 0) Given an initial encoded text of 1-state-length equal to L, ... 

 1) Stratify extensively to a given N
 

0 (i.e. use all available codes) 

 2) Calculate µ(N
 

0, K) for several K’s  

 3) Store the set of all µ
 

0(N
 

0, K)  

 4) Select randomly a 2-state 

 5) Perform a fusion of this 2-state to an 1-state that is decided at random to be the first or  

    the second 1-state, but once decided then is homogeneously applied to the whole text. 

 6) Calculate µ
 

1(N
 

1, K) for several K’s  

 7) Store the set of all µ 
 

1(N
 

1, K) 

 8) If µ 
 

1(N
 

1, K) 
 

~
> µ 

 

0(N
 

0, K) for several corresponding K’s, then 

   8a) Set µ 
 

0(N
 

0, K) = µ 
 

1(N
 

1, K) for all K’s in the calculation 

   8b) Set N
 

0 =  N
 

1 

  Endif 

 9) Go to step 3, UNTIL  satisfied. ▲ 

 

What resides in the symbol-table at end, is the optimum alphabet. A 1-state of this symbol-table 

may consist of one or blocks of the original 1-states. We can calculate the transition matrix p(i|j) 

for these 1-states and use this p(i|j), for time-series prediction of a future 1-state. 
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Figure 1: μ versus k. Here N=4 for all sequences. 

Figure 5: μ versus k. Here N=63 for all sequences. The 

upper family of curves comes from WRD analysis. 

Figure 2: μ versus the percentage of shuffling for 

SYMDYN. 

Figure 3: μ versus the percentage of shuffling for 

DNA 

Figure 4: μ versus K for DNA for various sub-sequences 

starting at various positions inside the long sequence 


