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Abstract: A novel method for ionic collisions is presented based on a theoretical 

analysis of the long-standing wire fragmentation problem. New experimental results 

show the possibility of building solid state ion colliders below the fragmentation 

threshold using high power electrical pulses with very low energy. 
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1. Introduction 

 

In a series of previous publications [1, 2] we analyzed the problem of wire 

fragmentation, which is associated with a long-standing controversy in Maxwellian 

electrodynamics. The first experiments in wire explosions under very high currents 

and voltages were made by Nasilowsky during the 60s.  At the 80s, Pappas [3], 

Graneau [4, 5] and Rambaut and Vigier [6] repeated similar experiments and argued 

on the existence of longtitudinal forces beyond the ordinary Maxwellian 

electrodynamics. Other attempts for a correct explanation [7, 8] fail to provide a clear 

picture of the phenomena in terms of the Maxwell stress tensor. 

A corrected picture in terms of the classical Maxwell theory is presented which is 

amenable to experimental verification in section 2, based on the instantaneous forces 

between radiating dipoles created by the action of a transient high power current 

pulse. In section 3, experimental results are reported with a particular pulse generator 

of very low internal resistance and low capacitor energy. Results with this method 

show impressive alterations and fatigue exerted on the metallic structure of thin wires 

even below the fragmentation threshold. In section 4, it is proposed to use similar 

effects in order to create a solid state ion collider. Arguments are presented for the 

treatment of special metals and/or unstable isotopes by this method for low energy 

nuclear transmutations and possibly for neutralization of radio wastes. 

 

2. Macroscopic treatment of forces on thin wires under transient standing 

waves 

 

Let us consider a thin linear conductor (hereafter termed “wire”) of length L along the 

z-axis and centered in the origin. Let us assume also that on this thin wire a short 

duration electric pulse current is excited through the discharge of a capacitor. This 

current pulse has a transient behavior in the initial very short duration time of his 



application, considering the thin wire as an antenna or an electric line. The result of 

the current pulse on the thin wire will be a set of transient space harmonic standing 

waves related to its length L. Due to the assumption that the wire is very thin we can 

also assume that the first (or second) fundamental transient standing electromagnetic 

wave has a wave length equal to L and a frequency L/c where c=3·10
8
 m/sec. 

 Then the current of this transient standing electromagnetic wave current along the z 

axis will be given as 
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where 2 / , , / 2 / 2, . .,k L c k L z L i e kzπ ω π π= = ⋅ ≥ ≥ − ≥ ≥ −  . If we divide the thin 

wire considering it as an antenna into small infinitesimal dipoles of length dz1 then all 

dipoles from the first half wavelength (upper part of the antenna) are oppositely 

oriented to the rest of the dipoles for the other half wavelength. The currents of the 

dipoles dz1, dz2 will be given by the expression 
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thus their complex equivalents (considering them as having zero phase) will be given 

by the functions 1 1 2 2( ) sin( ), ( ) sin( )I z I kz I z I kz= ⋅ = ⋅ These electric dipoles of length 

dz1 and dz2 can be represented also by their equivalent electric charges given by the 

relations 
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Thus their complex equivalents (as having phases -π/2) will be given by the functions 
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We may then assume that every such dipole dz1 creates an electric field dE12(z) 

affecting every dipole dz2 at the lower part of the wire and at distance z12. We show 

two oppositely oriented dipoles on the wire schematically in Fig. 1. 

According to standard formulas for radiating dipoles [8] we can write the total field 

of each elementary dipole in space as: 
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where πεµ 120/ 000 ≅=Ζ  the impedance of free space. Along the z-axis where θ 

= 0 and  kr=kz12, we find the total contribution of dz1 to dz2 as  
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This complex function represents the real function of time dE12(t) and its partial 

derivative given as 
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The instantaneous net Coulomb force due to dE12(t) on the dipole dz2 (represented by 

the charges ±q(z2))    is given by  
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Using the following identity for complex numbers A and B: 
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it can be shown that 
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Taking into consideration that 2 2 2( ) ( ) sin( )I z I z I kz∗ = = ⋅  and k/ω=1/c we can deduce 

that the instantaneous force between the dipoles 1 and 2 is comprising of two parts a 

constant repelling force and an instantaneous sinusoidal force. The constant repelling 

force is given by the formula 
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Taking into consideration that 
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The force differentials are derived as 

  



2 2

12 1 2 1 2

12

1
60 sin( )sin( )

( )

f
dF k I kz kz dz dz

c kz

∂ = −  ∂ 
    (6a) 

12 12
12 3 2

12 12

cos( ) sin( )
( )

( ) ( )

kz kz
f z

kz kz
= +        (6b) 

 

After some algebra these take the form  
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As a result of the above relation the overall repulsive force acting on the dipole dz2 

(on the lower L/2 part of the transient antenna) by all the dipoles of the upper L/2 part 

is given by the integral  
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∫ ,  x1=k·z1 ,  x2=k·z2 (8) 

 

Thus the overall transient repulsive force between the lower and the upper parts of 

the antenna due to the first harmonic (of L wave length) is given by the integral 
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The overall sinusoidal force of angular frequency 2ω has a maximum value given by 

the formula  
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Thus after some algebra it can be proved that the overall sinusoidal force acting on 

the dipole dz2 (on the lower L/2 part of the transient antenna) by all the dipoles of the 

upper L/2 part can be calculated by the formula 2 2

2 1 2( )F x F F= +  where 
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where 
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However it can be proved that the integral F2 is always bigger than the integral F1, 

thus approximately the maximum sinusoidal component is almost equal to the steady 

component. This means that the maximum value of the instantaneous repelling force 

on the dipoles can become two times their steady values. Although the frequency of 

the instantaneous repelling forces is very high for light dipoles of small inertial mass 

the effect of the sinusoidal component could be substantial. 

 

As a final remark we can notice that the steady repulsive force can be calculated 

using stored energy due to the interaction of the dipoles 1 and 2, dW12. The stored 

energy dW12 is calculated through the mutual reactive power dQ12 and the steady 

repulsive force is calculated through dW12 by the relations 
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The mutual reactive power is calculated from  

 

[ ]2221212 )()(Im2 dzzIzdEdQ =      (14) 

 

where the factor of 2 is to take into account the two equal and opposite actions from 

dz1 to dz2 and vice versa.  Thus: 
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This leads to a steady repelling force which is given as 
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The actual distance between two opposite dipoles dz1 and dz2 is approximately equal 

for small diameters in comparison to wire length as: 
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We should notice that when the length 1x  and 2x  become comparable to the diameter 

D the distance between adjacent dipoles 1 2| |x x−  should be calculated with a smaller 

effective diameter. This could be incorporated with an appropriate empirical 

coefficient such that 1, 11 <= cDcDeff . Then the overall repelling force will be given 

approximately by: 
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In the following graph (2) the steady repulsive force acting on the lower L/2 part of 

the thin wire by all the upper dipoles of its upper length L/2 is shown as function of 

the ratio of the wave length to equivalent wire diameter. The integral ( )kDϕ was 

numerically evaluated in MATLAB standing for a “Tensile Force Factor” and the 

force was calculated with respect to the parameter kDDL /2/ π=  as shown in Fig. 2. 

Thus the “bipolar” repelling force between the upper and lower parts of a wire of a 

given length can be calculated for given values of the diameter. 

Using the same approach the repelling force on the set of dipoles around dx in one 

half of the wire in a distance 1x  off the centre of the wire (calculated in wire 

diameters) arising by all the dipoles of the other half  of the wire can be found as 
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This function was numerically evaluated for various values of 1x  (in wire diameters) 

and its values (as a percentage of the maximum value) are shown in Fig. 3 for a wire 

length equal to 200 wire diameters.  

From the data of Fig. 3 it is evident that the maximum repelling force is exercised on 

the dipoles near the centre of the wire. That explains the expectation that the first 

crack on the wire due to dipolar repelling force will appear near the centre of the 

wire. It also agrees with experimental evidence from the heavy water drill apparatus 

where half of the heavy water is expelled during its operation [13]. From what 

appears to be the case, the quantity of the expelled water leaving the drill tube comes 

from the second half of the tube and gets separated near the middle of the tube while 

the other half which is pushed backwards remains in the interior of the tube. 

   

 

 

  



3. Experimental investigation of bipolar forces  

 

In order to prove the existence of strong ionic collisions inside thin wires a special 

pulse generator was designed. The basic circuit is shown in Fig. 4. The aim behind 

this design was to have the overall internal resistance of this circuit to lie in a range of 

some mΩ’s. For this, a special set of capacitors and a thyristor of very low internal 

resistance were chosen. 

The current pulses were created by the discharge of the capacitor bank composed of 4 

cpacitors in parallel, each of 3 µF with 12 µF total capacitance (4.3), with the aid of a 

special digital controller circuit (4.6) that allowed both a single pulse or a sequence of 

consecutive pulses (see Fig. 4). The actual device is shown in Fig. 5. The duration 

between subsequent pulses in the sequential mode was of the order of 3 secs. These 

were then applied to a variety of wires of variable diameters and a constant length of 

approximately 27 cm.  

The exercised voltage of the capacitors was nearly 1000÷1200 Volts and the 

discharge resistances including the circuit and the additional wire resistance were 

from 100 mΩ to 300 mΩ. The time constant of the occurring discharges were thus in 

the range of several µsecs. 

The values of the instantaneous currents exerted on the wires from these current 

pulses were in the range of 4000A-12000A. It was not possible to measure the 

magnitude of the fundamental harmonic but its existence could be detected by the 

appearance of longitudinal vibration of the thin wires that could be detected visually 

and easily could be captured by a high resolution camera.   

 Direct inspection showed that during the first pulse, a cloud of metallic dust gets 

violently expelled from the wire surface. This is speculated to be the result of the 

bipolar forces on defects and dislocations in the metallic crystal lattice. After several 

pulses depending on the wire diameter some of the wires get cut not necessarily near 

the center of the total length. This apparent discrepancy with the theoretical 

prediction of section 2 is probably due to the simultaneous coexistence of several 

different wavelengths due to the continuous spectrum of the discharge curve. 

A number of wires with a steel core and a conductive metallic layer deposited with an 

electrolytic bath were also tried to show that it is possible to increase the tensile 

strength to avoid fragmentation. Indeed, the type of fatigue of the conductive metallic 

layer remained the same although the wire did not get cut despite a large number of 

pulses applied sequentially for a long time interval of several minutes up to half an 

hour.  

In particular, the specific type of fatigue appearing in a set of experiments with 

copper wires of 27cm length and an average resistance of 300 mΩ was shown to be 

characterized by three major effects. 

a) A number of almost periodic burns on the external surface of the wire that is 

probably associated with the wavelengths of higher harmonics. 

b) An overall zig-zag shape obtained by a loose wire and a subsequent length 

shortening that is strongly suggestive of the opposite local dipole polarities 

,due to the action of several harmonics, at certain sections of the wire. 

c) At some of the experiments sparks appeared to emanate from points of the 

surface totally unrelated with the final break point. Some of these were 

captured with the video camera and may be related with local charge 

concentrations on previously created cracks of the metal surface. 

 



Observation of the condition of the wires surface took place at the Laboratory of 

Metallurgical Microscopy of the National Technical University of Athens. Results 

were photographed and are shown in the pictures of Fig. 6. Examination of these 

samples revealed both vertical as well as helical cracks on the metal surface. 

Another question concerning the appearance of the characteristic “neck”-like 

configuration of a metal near the break point due to increased metal plasticity as 

usually predicted was not verified. The final breaking mechanism may require 

separate study but our purpose in these experiments was rather to prevent the wires 

from reaching their tensile strength threshold in order to create a sustainable 

mechanism for exerting bipolar forces on a metallic lattice without breaking. 

 

4. The possibility of  transmutations inside metallic lattices under high current 

pulses 

 

During the last thirty years various experimenters [10 - 14] have found evidence of 

X-rays and neutron production during fragmentation tests. In the most recent case, 

Shyam and Rout [14] used Palladium Deuteride in a discharge experiment and 

reported an outflux of 0.5×10
4
 neutrons per discharge. 

The difference in the experiments reported here lies in the fact that we used a very 

low internal resistance circuit with a minimum energy stored in the capacitor bank 

not exceeding 20J. This allows the maximum current flow with a minimum of 

dissipated energy in order to reach a practical method for energy production without 

fragmenting the used conductors that play the role of the fuel.  

The question remaining to be answered concerns the use of other metallic compounds 

with different types of nuclear chemistry that could exhibit either fission or fusion 

reactions. The unique interpretation offered here shows that the existence of 

stationary waves across the conductor’s body moves the ionic centres in an 

inhomogeneous manner. It is then expected that certain “hot spots” will appear on the 

metallic surface depending of the type of metal used due to the ionic collisions 

concentrated around the nodal points of the system of stationary waves where 

opposite polarities of the local radiating dipoles meet. 

According to the analysis presented in section 2 the forces exerted on the lattice 

depend on the total current flowing through the conductor and not in the energy 

stored in the capacitor bank. This distinguishes our approach to the problem form 

other similar approaches where huge amounts of energy of the order of several kJ are 

thrown in the wires like in Z-pinch or X-pinch experiments. 

At first approximation and for low energies we may approximate the situation on the 

conductor with a standard lattice model where the fed energy gets dispersed among a 

system of normal modes or phonons that propagate with different group velocities. In 

order for a transmutation to occur it is necessary that an amount of ions will gain 

enough energy to overcome the Coulomb barrier. The probability for this to happen 

depends strongly on the phonon density of states g(E). Assuming a boson statistics 

this will be given approximately from the quantity f(E)g(E) where the distribution 

[ ] 1
1/)exp()(
−−−= kTgEf ii µε  depends on the chemical potential µ of the metal 

used. The reaction rate near the excitation energies ει of unstable nuclei depends on 

the particular shape of the g(E) curve. 

Estimation of g(E) is not trivial for the case of a very strong transient electric pulse. 

Although some studies with fsec laser pulses exist in the literature, the situation of a 

whole conductor is mostly difficult to analyze theoretically when the applied external 

field varies in both space and time as in the case of a system of transient stationary 



waves. Αnharmonicities will also appear due to the presence of a vector potential in 

the Hamiltonian of the ionic lattice that gets also affected by secondary emissions as 

the ions move violently in the opposite direction of the electron gas to conserve 

momentum. It is even possible that above a certain threshold of the applied voltage 

there will be deviations from the assumed linearity (purely Ohmic resistance) of the 

current - voltage (I-V) curve due to nonlinearities present in a macroscopic sample. 

Despite the theoretical difficulties all experimental evidence supports the possibility 

of low energy transmutations in the presence of high power electrical pulses in linear 

conductors. Our goal in these and subsequent experiments will be to try different 

metallic compounds of special unstable elements to find out such combinations that 

will be sufficient for nuclear reactions with the minimum possible energy input.  

 

5. Conclusions 

 

We have presented both theoretical and experimental evidence of ionic collisions 

inside metallic lattices of linear conductors when excited by high power and low 

energy electrical pulses. Based on several previous experimental attempts we build an 

explanatory macroscopic physical model based on classical Maxwell theory for the 

transient electromagnetic forces exerted on the ionic centers that allows experimental 

verification. In contrast with previous efforts, we show by direct experimental 

evidence that low energy, high power pulses can be used to achieve strong enough 

forces on the conductors without fragmentation. We also propose to use them for 

controllable nuclear transmutations in the case of special or unstable metallic 

compounds for a variety of possible uses that range from energy production to radio 

waste disposal. 
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Figure 1. Schematic representation of the oppositely oriented instantaneous dipoles 

on the thin wire  
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FIGURE 2. Tensile force factor as function of the ratio of the wire length (equal to 

transient wave length of first harmonic) divided by the wire diameter 
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FIGURE 3.Tensile strength on the lower dipoles (arising by the action of upper 

dipoles) as function of their distance by the centre of the wire. Wire length 200 times 

the wire diameter.  

 

 

 

 

 

 

 

 



 
 

FIGURE 4. Schematic diagram of the circuit used in experiments : (4.1) AC/DC 

Inverter  (4.2) Charging switch  (4.3) Capacitor bank (4.4) Discharge thyristor  (4.5) 

Testing wire (4.6) Electronic control unit. 

 

 

 
 

 

FIGURE 5. Exterior view of the whole device with the test wire attached (see white 

paper sign on the right) 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

 

FIGURE 6. Condition of a wire surface after a succession of high power current 

pulses. 

 


